An Interlacing Property of Eigenvalues of Strictly Totally Positive Matrices

نویسنده

  • Allan Pinkus
چکیده

We prove results concerning the interlacing of eigenvalues of principal submatrices of strictly totally positive matrices. §

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An interlacing property of eigenvalues strictly totally positive matrices

We prove results concerning the interlacing of eigenvalues of principal submatrices of strictly totally positive (STP) matrices.

متن کامل

Interlacing Inequalities for Totally Nonnegative Matrices

Suppose λ1 ≥ · · · ≥ λn ≥ 0 are the eigenvalues of an n × n totally nonnegative matrix, and λ̃1 ≥ · · · ≥ λ̃k are the eigenvalues of a k × k principal submatrix. A short proof is given of the interlacing inequalities: λi ≥ λ̃i ≥ λi+n−k, i = 1, . . . , k. It is shown that if k = 1, 2, n− 2, n− 1, λi and λ̃j are nonnegative numbers satisfying the above inequalities, then there exists a totally nonneg...

متن کامل

Self-interlacing polynomials II: Matrices with self-interlacing spectrum

An n×n matrix is said to have a self-interlacing spectrum if its eigenvalues λk , k = 1, . . . ,n, are distributed as follows: λ1 >−λ2 > λ3 > · · ·> (−1)λn > 0. A method for constructing sign definite matrices with self-interlacing spectrum from totally nonnegative ones is presented. This method is applied to bidiagonal and tridiagonal matrices. In particular, a result by O. Holtz on the spectr...

متن کامل

Lecture 5: Eigenvalues of Hermitians Matrices

This lecture takes a closer look at Hermitian matrices and at their eigenvalues. After a few generalities about Hermitian matrices, we prove a minimax and maximin characterization of their eigenvalues, known as Courant–Fischer theorem. We then derive some consequences of this characterization, such as Weyl theorem for the sum of two Hermitian matrices, an interlacing theorem for the sum of two ...

متن کامل

Nonlinear eigenvalue { eigenvector problems for STP matrices

A matrix A is said to be strictly totally positive (STP) if all its minors are strictly positive. STP matrices were independently introduced by Schoenberg in 1930 (see [13, 14]) and by Krein and Gantmacher in the 1930s. The main results concerning eigenvalues and eigenvectors of STP matrices were proved by Gantmacher and Krein in their 1937 paper [6]. (An announcement appeared in 1935 in [5]. C...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998